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Abstract. In the real world, concept drift happens in various scenar-
ios including medical treatment planing. Traditional approaches simply
eliminate/dilute the effect of outdated samples on the prediction, leading
to a less confident (based on fewer samples) prediction and a waste of
undiscovered information contained in past samples. With the knowledge
of how concepts change, outdated samples can be adapted for up-to-date
prediction, which improves the confidence of prediction, especially for
medical data sets of which the scale is relatively small. In this paper we
present an adaptive k-NN classifier which can detect the occurrence of
target concept drift and update past samples according to the knowl-
edge of the drift for better prediction, and assess the performance over
simulated and real-world categorical medical data sets. The experiment
results show our classifier achieves better performance under concept
drift.
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1 Introduction

Concept drift was originally observed in streaming data, where the relation
between the target class and features changes over time in unforeseen ways. The
phenomenon also exists in other fields such as medical diagnosis. For example,
Fig. 1 shows that the chemotherapies being used in breast cancer diagnosis are
changing as time goes on, over different molecular subtypes [8,9] (e.g., Luminal-
A), and the patients of some molecular subtypes receive different chemotherapies
in different periods of time.

However, most state-of-art concept-aware learning algorithms focus on
streaming data but medical diagnosis data. They achieve good performance using
techniques such as ensemble learning, transfer learning, etc. For example, a novel
algorithm named DETL [12] utilizes each preserved historical model as an ini-
tial model which is further trained with the new data via transfer learning. Even
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Fig. 1. Distribution of samples for different molecular subtypes, where the x-axes rep-
resent samples in temporal order, and the y-axes represent a proportion of the seven
chemotherapies in each period of time.

though DETL can effectively handle concept drift in both synthetic data (e.g.
SEA [11], STAGGER [7]) and real-world data streams. However, it is not easy
to port this kind of algorithms directly to process such medical diagnosis data
without transforming categorical data into numerical.

The medical diagnosis data is very limited compared with other fields, so that
it is natural to process it with case-based approaches, i.e., the k Nearest Neigh-
bors algorithm (k-NN). The k Nearest Neighbors algorithm is a non-parametric
method used for classification and regression, and it has been applied to vari-
ous areas [1]. To deal with concept drift, based on the idea of ‘forgetting’ old
samples, previous work uses sliding windows to filter the historical samples for
reference [13], or applies an age-related weight to each sample to dilute the influ-
ence of older samples [4,5]. However, simply forgetting old samples is not suitable
in medical treatment recommendation. For small-scale data sets such as medi-
cal diagnosis data, each sample is precious and contains invaluable information
due to the individual variation in patients. During the process of prediction, we
should take as many samples into account as we can. And the prediction result
based on more samples is more confident and more resistant to noises.

To tackle the problems introduced by concept drift, and to make better use
of old samples, we propose a new k-NN based classifier using the paired learner
technique [2]. In this approach, we discover knowledge of how an old concept
changes to a new one. Instead of discarding outdated samples, we create a replica
of them to preserve the original information, and then revise the labels according
to new concepts for future predictions. To study the effectiveness of the approach,
we compare it with two baseline methods over both simulated and real-world
data, and analyze the influence of the parameters in the proposed approach.
Focusing on medical treatment recommendation, the contribution of the paper
is list as follows:

1. We improve the concept-drift detection method based on the paired learner
technique.
2. We propose an adaptive k-NN classifier for concept-drifting data.
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3. Extension experiments over both simulated and real data sets prove our app-
roach has better performance against baselines.

The rest of the paper is organized as follows: Sect.2 details our approach.
Section 3 presents the results of our experiments using different approaches over
simulated and real-world data sets. Section 4 concludes the paper.

2 Learning Under Concept Drift

In this part, we first put forward a modified overlap similarity, and then illustrate
in detail a k-NN based adaptive classifier which behaves well under concept drift.

2.1 Notations

For a data set D containing N samples, we define A as the set of d attributes
where A, denotes the k*" attribute, and define C' as the set of all types of target
class. Temporally, let t** sample in data set D be represented as follows:

D, =< :c(t),y(t) > (1)

where € = (11, 72,23, ...,24)7 denotes an attribute vector of a sample, and y € C
is the labeled class of D;. For convenience, we use N® to represent NN[a, b], which
is the set of integers from a to b inclusive.

Similarity measure is a key issue of classifiers such as k-NN. For numerical
attributes, the Mahalanobis distance [6] is as follows:

Dist(a®,a) = \/(2(® — 2®)T51 (@) — 2) @)

where S is the covariance matrix. We then convert this distance measure to a
similarity measure with the scale from 0 to 1 using the following formula:

1

; (a) (b)Y —
Sim (', 2")) = 1+ Dist(@@, 20))

3)

Further, during classification, the sample will be labeled by a class according to
the labeled classes of its neighbors as well as its similarity with its neighbors,
i.e., for a sample x, the similarity is used as a weight for each neighbor, and
then, the sample will be labeled by a class with the largest linear combination of
weight among the neighbors, rather than simply assigning the majority of class
labels in its k£ nearest neighbors to the target case.

{J = arg max Z [[y(i) = yc] - Sim(z, 33@)) (4)
Ve pies(a.k)

where [-] is an indicator function, where [true] = 1 and [false] = 0, and S(z, k)
represents the set of k-nearest neighbors of a sample .
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2.2 Similarity Definition for Categorical Features

Since the value of categorical features is discrete, it prevents application of
the Mahalanobis technique. The similarity value between two samples D, =
< 2@ y@ > and D, =< x® y® > in this context is usually synthesized by
similarities in all attributes as follows:

Sim(z@, 2®) = £ wSimy (21, ") (5)
where Simk(x,(ca), .Z‘](Cb)) denotes the similarity between single attribute Ay of sam-
ple D, and sample Dy, and the weight wy indicates the importance of each
attribute Ay.

Overlap [10] is a method to define the similarity between two categori-
cal attributes. It calculates the similarity by counting the number of matched
attributes, e.g., 0 represents not matching, and 1 represents matching, during the
measurement of the similarity of a pair of samples on a single attribute. Thus,
the proportion of the number of attributes in which they match is considered
as the similarity between two multivariate categorical samples. However, in real
data sets, missing the value in some attributes is very common. Consider three
samples D,, D, and D, having the following properties:

x,(ga) + x,(gb) and :cgf) is missing, Vk € N¢ (6)

Notice that D, and Dj are completely different because they do not match in
any attribute, while the similarity between D, and D, should be neutral since
we do not know any of the attributes of D.. Hence, it follows that the heuristic,
Sim(x(®) | () should be the minimum while Sim (x(®), 2(¢)) should be defined as
a compromised value. To deal with cases where the data set has missing values,
the modified overlap measure is defined as follows:

1 ifm,(f) = x,ib)

. a b
Szmk(x; )al"/(g )) =405 ifx,(ga)orz,(cb) is missing (7)
0 otherwise
1

Equation 8 shows that the weights of all attributes are the same. However,
the experimental results in a past study [3] suggest that there is no one best
performing similarity measure, hence we choose overlap to measure similarity
for the sake of convenience.

2.3 Adaptive Classifier and Concept-Sensitive Detector

Similar to the paired learner, we equip the k-NN classifier with a concept-
sensitive detector with a fixed-size sliding window to enable it to adapt to concept
drift. Denote the adaptive classifier as AC' and the concept-sensitive detector as
CSDy, with a sliding window of size sw. AC classifies new samples based on
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Algorithm 1. Adaptive k-NN Classifier
Input: D, Ninit, sw, k
Output: predicted class for each object
D ={< 2@ y® >}V, : training data
Ninst: initial training sample number
sw: sliding window size of concept-sensitive detector

1: AC « an adaptive k-NN classifier
2: CSDsy < a concept-sensitive detector of window size sw
3: for ¢ +— 1 to Nipit do

4: AC train(D;) & CSDgy.train(D;)
5: end for

6: for ¢ «<— Ninit +1 to N do

7 JAC — AC.Classify(a:“))

8: output gac

91 Jcsp — CSDsw.classify(m(i))
10:  if concept drift detected then
11: revisePastSamples(AC)
12: end if
13: AC train(D;) & CSDgy.train(D;)
14: end for

all historical samples while C'S D, makes use of the most recent samples within
sw. So the effectiveness of the paired learner is based on the following heuristics:

1. Based on more knowledge, the result is more reliable.
2. Based on more recent knowledge, the result is more reactive.

As shown in Algorithm 1, the input is a data set D of N samples, the number
of initial training samples N;,;:, the sliding windows size sw, and the number
of nearest neighbors k. To initialize AC' and C'SDy,,, the algorithm trains them
with {D;|i € NNt} independently (line 3-5). Note that, different from AC,
CSDy,, keeps at most sw training samples, and will forget the earliest sample
if the size of the training samples exceeds sw. After initialization, the classifier
predicts new samples via AC' (line 7-8) and in the meantime both classifiers learn
from the sample (line 13). During the prediction, if the algorithm has observed
the occurrence of concept drift, the main classifier AC' will be updated, so as
to maintain its performance under the new concept (line 10-12). Note that we
always create a replica to preserve the original labels before revising outdated
samples.

In common cases, AC should behave no worse than C'SD for its abundant
knowledge of both recent and past data. At the very beginning of the occurrence
of concept drift, new samples are classified according to outdated knowledge, thus
performance degradation for both classifiers is observed. But C'SD’s performance
can return to a normal level soon, because the historical data of C'SD is replaced
with those under the new concept due to its abandoning of past samples. Based
on this heuristic, the occurrence of concept drift can be observed by monitoring
the performance of the paired classifiers. That is, when C'SD performs better
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than AC for a period of time, we assert an occurrence of concept drift, and then
revise the historical data of AC for better adaptation to the new concept.

2.4 Sample-Based Drift Detection and Adaptation

Instead of detecting concept drift by comparing the accuracy of each classifier
in the paired classifiers for a batch of recent samples, we explore a sample-
based drift detection and adaption method, since the batch accuracy comparison
method cannot handle concept drift in small local part of the original data.
Intuitively, we can separate the feature space into many small zones or apply
clustering on the original data, and monitor concept drift independently in each
zone or cluster. More extremely, we regard each sample as a single zone, in other
words, we keep monitoring each sample during the classification and then we can
judge for each historical sample whether the labeled class should be changed to
ensure better prediction of future samples. Meanwhile, based on information of
misclassification for each sample we have logged during classification, the new
class to which a drifted sample should be revised can be decided simultaneously
along with the detection, as shown in Algorithm 2.

Denote the sample being processed at the moment as D, gy, if AC incor-
rectly classifies it but C'SDy,, correctly classifies it (line 4). Then the training
samples in AC, based on which the prediction was made, are marked as con-
flicting with the current sample D,,.,,, for they are considered to have provided
wrong implications (line 5). For each training sample in AC, if it satisfies certain
conditions (line 6), e.g. being observed frequently conflicting with recent sam-
ples, it is regarded that its features fall in the zone where concept drift occurs.
In this case, AC revises this sample with a new class according to its confliction
records (line 8). The confliction records for sample D; contain tuples of samples
in future predictions which select D; as one of the nearest neighbors for refer-
ence but receive a negative effect due to the difference in their actual classes.
The definition of confliction records C[t] is as follows:

{(,y"N)]i > t A2 e AC.nearest(k, z) Ay #£ 4O} (9)

Note that we have y(? # 3" V(i,y*) € C[t], once D; contributes to a correct
classification for D;, we clear the former confliction records of D; to avoid a false
alarm caused by noise (line 11). The concept-drift condition (line 6) is a key
point to this algorithm, which directly decides whether to declare an occurrence
of concept drift so as to revise the historical samples. We use a score-based
indicator in our algorithm.

What we are most concerned about are the target classes for present and
future samples, thus for tuples in the confliction records C[t], conflicts with
recent samples are apparently more valuable than those with older ones. In
addition, responses that are too fast always cause false alarms, and conflicts in
stable periods are much more meaningful than those in unstable periods. To
differentiate between stable and unstable periods, according to the confliction
records, we say it is stable if there is no conflicts in a fixed period of time,
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otherwise it is unstable. Based on these heuristics, we assign scores for each
conflict which appears in C[t] with a function having a positive correlation with
time, so that confliction records in stable periods have higher scores. Then we
add the scores for each class as its measure.

The function Score(y) can be defined in a variety of ways, as long as it has
a positive correlation with timne. The following is one candidate for the function
using the exponential technique:

Score(y) = Z 1—e=G=t) (10)
(4,y)eClt]

If the score of a certain class dominates among the candidates, we assert that
Dy is affected by concept drift and we know exactly the trend of its change.

Algorithm 2. Sample-based detection and adaptation method

Input: D, C, k, S, §ac, jcsp, <z ymow) >
Output: Whether concept drift detected

D = {< 2@, y® >}"w=1: training data of AC

C: a dict of confliction records for training data

yac: class predicted by AC

ycsp: class predicted by CSD

< gmow) y(mow) 5. cyrrent sample.

nearest(k, ): returns a set of x’s k nearest neighbors

1: S «— {t|D: € AC mearest(k, ™)) A y; = Jac}
2: flagO f Drift < False

3: fort € S do

4: if QAC # Ynow and QCSD = Ynow then

5: Ct].append((now, Ynow))

6: if C[t] satisfies concept-drift conditions then
T flagO fDrift — True

8: revise Dy

9: end if

10:  else

11: C'[t].clear()

12: end if

13: end for

14: return flagO fDrift

3 Experiment Study

To verify the effectiveness of our adaptive k-NN classifier, we compare it with
several baseline approaches over two data sets. Since finding the best k in the
k-NN classifier is not within the scope of this paper, we simply use k£ = 10 in all
the following experiments. Commonly the value of k& should be an odd number
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to avoid tied votes, but it does not matter if we set k¥ = 10 in our approach, as
we choose the final class according to the sum of similarity instead of the plain
count for each candidate.

3.1 Evaluation Metrics

We assess the performance of our approach and conduct comparison experiment
with following two metrics: Accumulative accuracy and Next-n accuracy.
Accumulative accuracy is defined as follows:

t

1 . .

Accura’c}’accum (t) = 7 Z [[g(z) = y(l)]] (11)

t— Ninit =N
1=Ninit+1

where t and N;,;; denote the index of current sample and that of the last sample
in initial training set, respectively. Accumulative accuracy evaluates the ratio
of samples which are correctly classified to the current moment, while Next-n
accuracy evaluates the ratio of samples which are correctly classified among the
next n samples, and it is defined as follows:

t+n

1 ~ (1 A
Accuracy, (t) = — > [1') = 4] (12)
i=t41

A curve of accumulative accuracy reveals long-term trends in the classifier per-
formance, while a curve of next-k accuracy shows short-term changes in perfor-
mance. For both metrics, the larger the value of accuracy, the better performance
of the classifier.

3.2 Comparison Classifiers

— k-NN: This is a basic k-nearest neighbor classifier playing the role of baseline,
using the modified overlap similarity measure mentioned in Eq. 7.

— k-NINSW: This is a window-based extension of k-NN in order to deal with
concept drift by learning knowledge from the most recent samples within a
sliding window.

— AK-NN: This is an adaptive k-NN classifier mentioned in Algorithm 1. To
study the influence of different concept-drift indicators in Algorithm 2, we
implement all three indicators respectively and compare them in the experi-
ments.

3.3 Data Sets

To verify the performance of our algorithm, we perform experiments over an
artificial data set with concept drift, named Simulated Data (SD). Moreover,
we also compare different methods over a real medical data set named Breast
Cancer Chemotherapy Data (BCCD), where we use the classifiers to rec-
ommend chemotherapy for breast cancer patients according to historical cases.
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Table 1. Data sets overview

Name|Entries| Attributes | Classes|Drift position|Name |Entries|Attributes|Classes|Drift position
SD | 3000 6 4 1000 BCCD 2770 12 8 unknown

—— kNN
—— KNNSW
AKNN

—
0 500 1000 1500 2000 2500 3000 o 500 1000 1500 2000 2500 3000
Examples Examples

(a) Accumulative Accuracy in SD (b) Next-100 Accuracy in SD

500 1000 1500 2000 2500
Examples

(c) Accumulative Accuracy in BCCD  (d) Next-100 Accuracy in BCCD

Fig. 2. Results for k-NN, k-NNSW,  Ak-NN

Samples in both data sets are arranged in temporal order, where indices of each
sample also represent the time. Characteristics of these two data sets are summa-
rized in Table 1. For the simulated data set SD, there is an explicit drift position
of 1000 (the first 1000 samples are labeled according to their attributes using
a different linear function from the remaining 2000 samples), representing the
position where concept drift occurs, while for the real data set BCCD, samples
are collected from real cases, thus we cannot declare any explicit drift positions.

3.4 Experimental Results

On the simulated data set, we apply the classifiers and calculate the accumulated
accuracy of all predictions, and the average accuracy of the next 100 predictions.
The results of the two metrics are shown respectively in Fig. 2a and b. Both k-NN
and Ak-NN exploit the whole historical data, and thus they are more accurate
on average than k-NNSW as shown in Table 2. For long-term learning, k--NNSW
is not a good choice.

We knew in advance that there is an occurrence of concept drift at the 1000
sample in SD. As shown in Fig.2a, from the 1000*" sample onwards, affected
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Table 2. Overall accuracy over SD

sw [k-NN |k-NNSW | AE-NN |sw |k-NN |k-NNSW|AE-NN |sw |k-NN |k-NNSW|AL-NN
100{0.7598|0.7212 0.8634|150|0.7637|0.7451 0.8662|2000.7634|0.7573 0.8631

by the new concept, all the classifiers experience degradation in accuracy. The
basic k-NN classifier takes a long time to get its accuracy back to the former
level, while k--NNSW and Ak-NN both adapted to the new concept reactively.
The effect on the accuracy of all the classifiers is shown more clearly in Fig. 2b,
where Ak-NN and k-NNSW rebound rapidly soon after concept drift. However,
to return to the former accuracy, the plain k-NN classifier learns as many as 1000
new samples. If we have more samples before concept drift, the k-NN classifier
has to learn even more new samples to dilute the influence of outdated historical
samples.

The results over BCCD look slightly complicated and the concept shifts
slowly over time instead of changing suddenly. Rapid drops in accuracy for both
kE-NN and Ak-NN are observed in Fig.2d around the 500" sample, while k-
NNSW reacts well and maintains its accuracy at the former level. Due to the
concept-drift detection mechanism, Ak-NN’s accuracy rebounds slightly faster
than k-NN’s. Note that k-NNSW’s accuracy exceeds the other two at the very
beginning, but Fig. 2c shows the downward trend of using only the most recent
samples for reference and that k-NNSW will be defeated as more samples are
learned. The defect of k-NNSW is shown more clearly in Fig. 2d. At around the
1800 and 2300*" samples, k-NNSW suffers from its narrow window and has
an obvious degradation of accuracy while the other two classifiers remain sta-
ble. Even though it can recover very soon, its over reactivity harms the overall
accumulated accuracy.

4 Conclusion

We have proposed an adaptive k-NN classifier (Ak-NN) to tackle the concept
drift in medical treatment recommendation, which performs better than baseline
methods on both simulated data set and real data set. Derived from k-NN, our
approach is also non-parametric as it does not rely on the knowledge of distri-
bution of the input data. Instead of discarding outdated samples, the approach
discover the knowledge of concept drift, based on which it revises the old samples
for better prediction under the new concept.
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